Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shan Gao, ${ }^{\text {a }}$ Zhi-Biao Zhu, ${ }^{\text {a }}$ Li-Hua Huo ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}{ }^{\boldsymbol{*}}$
${ }^{\text {a }}$ College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.027$
$w R$ factor $=0.065$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved
\qquad

Polymeric diaqua(μ_{6}-1,5-naphthalenedisulfonato)barium(II)

The Ba atom in the title compound, poly[[diaquabarium(II)]-μ_{6}-1,5-naphthalenedisulfonato $], \quad\left[\mathrm{Ba}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~S}_{2} \mathrm{O}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, lies on a special position of site symmetry 2 and the dianion on an inversion centre. The Ba atom interacts with the O atoms of six different dianionic groups in the three-dimensional network and exhibits a square antiprismatic coordination.

Comment

The barium derivative of 1,5-naphthalenedisulfonic acid exists as a monoaqua derivative in which the dianion uses its O atoms to bind to six Ba atoms; the water molecule functions in a bridging mode to two Ba atoms (Cai et al., 2001).

A slight variation of reaction conditions has led to the isolation of a diaqua analogue, (I) (Fig. 1); the Ba atom, which lies on a special position of site symmetry 2 , is linked to the O atoms of six different dianions in a square-antiprismatic environment (Fig. 2). The Ba1-O1w distance [2.720 (2) \AA] is
 (I). Displacement ellipsoids are drawn at the 70% probability level and H atoms are drawn as spheres of arbitrary radii. The symmetry codes are as given in Table 1.

Received 1 February 2005
Accepted 8 February 2005
Online 19 February 2005

Figure 2
ORTEPII plot (Johnson, 1976), illustrating the square-antiprismatic coordination geometry of the Ba atom in (I). The symmetry codes are as given in Table 1.
significantly shorter than the corresponding distances in the previously reported monoaqua derivative [2.880 (3) and 3.084 (3) A] where the water molecule serves as a bridge and the geometry of the Ba atom is an unusual bicapped trigonal prism (Fig. 3).

Experimental

To a suspension of barium carbonate $(0.58 \mathrm{mg}, 3 \mathrm{mmol})$ in a $50: 50$ ethanol-water mixture was added 1,5-naphthalenedisulfonic acid $(0.66 \mathrm{~g}, 2 \mathrm{mmol})$. The mixture was heated to dissolve most of the carbonate; the unchanged reagent was removed by filtration. Colourless prismatic crystals separated after a few days. Analysis calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BaO}_{8} \mathrm{~S}_{2}$: C 26.13 , H 2.19%; found: C $26.11, \mathrm{H}$ 2.15\%.

Crystal data

$\left[\mathrm{Ba}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~S}_{2} \mathrm{O}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=459.64$
Monoclinic, $C 2 / c$
$a=22.274$ (4) A
$b=5.715$ (1) \AA
$c=10.443$ (2) \AA
$\beta=92.56$ (3) ${ }^{\circ}$
$V=1328.0(4) \AA^{3}$
$Z=4$

Data collection

Rigaki R-AXIS RAPID IP diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.245, T_{\text {max }}=0.530$
6313 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.065$
$S=1.12$
1525 reflections
103 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 3
ORTEPII plot (Johnson, 1976), illustrating the bicapped trigonal prismatic geometry of the Ba atom in the monoaqua derivative. Atomic coordinates are taken from the published structure of Cai et al. (2001). Atom $\mathrm{O} 1 w$ represents the bridging water molecule.

Table 1
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$).

$\mathrm{Ba} 1-\mathrm{O} 1$	$2.826(2)$	$\mathrm{Ba} 1-\mathrm{O} 3^{\mathrm{iv}}$	$2.753(2)$
$\mathrm{Ba} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.826(2)$	$\mathrm{Ba} 1-\mathrm{O} 3^{\mathrm{v}}$	$2.752(2)$
$\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{ii}}$	$2.783(2)$	$\mathrm{Ba} 1-\mathrm{O} 1 w$	$2.720(2)$
$\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{iii}}$	$2.783(2)$	$\mathrm{Ba} 1-\mathrm{O} 1 w^{\mathrm{i}}$	$2.720(2)$
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 1^{\mathrm{i}}$	$137.3(1)$	$\mathrm{O}^{2 \mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 3^{\mathrm{iv}}$	$76.1(1)$
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{iii}}$	$93.1(1)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 3^{\mathrm{v}}$	$160.9(1)$
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{ii}}$	$107.1(1)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 1 w^{\mathrm{i}}$	$70.4(1)$
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 3^{\mathrm{iv}}$	$79.8(1)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 1 w$	$70.7(1)$
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 3^{\mathrm{v}}$	$68.8(1)$	$\mathrm{O}^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{O} 3^{\mathrm{v}}$	$84.7(1)$
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 1 w$	$156.0(1)$	$\mathrm{O}^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{O} 1 w$	$121.2(1)$
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 1 w^{\mathrm{i}}$	$66.1(1)$	$\mathrm{O}^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{O} 1 w^{\mathrm{i}}$	$120.9(1)$
$\mathrm{O}^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{iii}}$	$123.0(1)$	$\mathrm{O} 1 w-\mathrm{Ba} 1-\mathrm{O} 1 w^{\mathrm{i}}$	$91.5(1)$

Symmetry codes: (i) $1-x, y, \frac{3}{2}-z$; (ii) $1-x, 2-y, 1-z$; (iii) $x, 2-y, \frac{1}{2}+z$; (iv)
$1-x, 1-y, 1-z$; (v) $x, 1-y, \frac{1}{2}+z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 1^{\text {vi }}$	$0.85(1)$	$2.10(2)$	$2.889(3)$	$155(5)$
O1 $^{\mathrm{i}} w-\mathrm{H} 1 w 2 \cdots 2^{\mathrm{i}}$	$0.85(1)$	$1.98(1)$	$2.808(3)$	$167(4)$

Symmetry codes: (ii) $1-x, y, \frac{3}{2}-z$; (vi) $1-x, 1+y, \frac{3}{2}-z$.
The water H atoms were located in difference Fourier maps and were refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.85$ (1) \AA and $\mathrm{H} \cdots \mathrm{H}=1.39$ (1) \AA. The carbon-bound H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and were included in the refinement in the riding-model approximation $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. The highest electron-density peak is located about $1 \AA$ from atom Ba1.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (No. 1054G036) and the University of Malaya for supporting this study.

metal-organic papers

References

Cai, J., Chen, C.-H., Liao, C.-Z., Feng, X.-L. \& Chen, X.-M. (2001). Acta Cryst. B57, 520-530.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

